材 料 試 験

[室内土質試験 =曽慶地内=]

報告書

工事名

令和5年8月

<u>依</u> 賴 者 株式会社 加藤重機

試料採取地 岩手県一関市大東町曽慶地内

武 岩手県一関与 表 岩手県一関与 表 大崎 33-1 TEL 1016(名) -2487 (株)総合 大学 サルタンツ

1. 試験概要

1-1. 要項

(1) 業 務 名: 材料試験

(2) 目 的 : この土質試験は、一関市大東町曽慶地内より採取した土質材料について室内土質

試験を行い、盛土材料としての使用の適否、ならびに施工管理上の基礎資料を得

る目的で実施した。

(3) 試料採取地 : 岩手県一関市大東町曽慶 地内

(4) 試料名: 曽慶地内

(5) 試験年月日 : 令和5年8月7日 ~ 令和5年8月24日

(6) 試験内容: 今回実施した室内土質試験の項目・基準ならびに数量は以下に示すとおりであ

る。

表1-1-1 土質試験項目·基準·数量表

	試験項目	試験基準	数量
1) 物理試験	地盤材料試験のための乱した土の試料調整方法	JIS A 1201	1
	土粒子の密度試験方法	JIS A 1202	1
	土の含水比試験方法	JIS A 1203	1
	土の粒度試験方法	JIS A 1204	1
	土の液性・塑性限界試験方法	JIS A 1205	1
2) 安定化試験	突固めによる土の締固め試験方法	JIS A 1210	1
	CBR試験方法	JIS A 1211	1

(7) 依 頼 者: 株式会社 加藤重機

〒029-0711 岩手県大東町大原字八幡館46-6 TEL 0191(72)3318 FAX0191(72)2468

(8) 試 験 者: 株式会社 総合土木コンサルタンツ

〒021-0902 岩手県一関市萩荘字金ケ崎33-1

TEL 0191(24)2487 FAX 0191(24)3334

担当者 佐藤隆弘

RCCM (土質及び基礎) 登録番号:第21-34-13005953号

1-2. 盛土工材料としての適性

下表に道路土工材料としての要求規格及び適性を整理する。

表1-2-1 道路土工材料としての要求規格

工種 または 利用目的	□規格(■目安)		
路体工	□ 締固め度Dc (%) Dc ≥ 90 (%) (※1)		
路床工	□ 締固め度Dc(%)Dc ≥ 95(%)(※1)■ CBR(%)CBR ≥ 3ないし設計CBR以上		

^{※1 「}東北地方整備局 共通仕様書」品質管理基準及び規格値に示される各工種の規格値。

1-3. 参考文献

(1) 地盤材料試験の方法と解説[(公社)地盤工学会](令和 2年12月)(2) 地盤工学会・実務シリーズ30[(公社)地盤工学会](平成24年 4月)

土の締固め

2. 試験結果

2-1. 試験結果

室内試験結果を下表にまとめ、道路土工材料としての使用が適しているかについて総合的に判定する。

	次Z-1-1 主的工具的版和本 見衣							
	試	料	番	号		曽慶地内	備考	
土粒	子の	密	度	ρs	(Mg/m^3)	2.700		
自 忽	太 含	水	比	Wn	(%)	9.2		
	分	÷	類	名		細粒分まじり礫質砂		
	7)]	7	枳	白		(SG-F)		
	礫		分		(%)	27.2		
粒度	砂		分		(%)	62.4		
特性	シル	 	分		(%)	6.5	Fc=10.4(%)	
付注	粘.	土	分		(%)	3.9	1	
	最大	粒	径		(mm)	9.5		
コンシス	液性	限	界	WL	(%)	N.P		
テンシー	塑性	限	界	WP	(%)	N.P		
特性	塑性	指	数	Iр		-		
付比	塑性	指	数	Ιc		-		
	試験	方	法			B-b		
	最大乾	2 燥 8	密度	ρ dmax	(Mg/m^3)	1.97	(施工管理基準値)	
締固め	最適	含水	比	Wopt	(%)	11.0	・路体工/河川土工締固め度 90% 以上	
特性	施工限	界含を	水比	W_{95}	(%)	15.4	施工限界含水比 W90	
1寸 1土	W_{95}	_	Wn		(%)	6.2	・路床工/補強土壁工	
	施工限	界含を	水比	W_{90}	(%)	18.3	締固め度 95% 以上施工限界含水比 W95	
	W_{90}	_	Wn		(%)	9.1		
С	В		R		(%)	22.0		
単 位	体 積 重	重量	*	γt	(kN/m³)	19.0		

表2-1-1 室内土質試験結果一覧表

	判	定
締固め特性	0	Wn < Wopt < W95 < W90
CBR値	0	CBR値 ≧ 設計CBR (=3)
	総	合 判 定
路体盛土工材料として	0	自然含水状態で使用可能
路床盛土工材料として	0	<i>II</i>

表2-1-2 道路土工材料として適否判定

[※] 単位体積重量は、締固め度90%時の湿潤密度に重力加速度を乗じたものである。

2-2. 試験結果に対する考察

(1)	路体工	盛土材料としての評価
		□ 試験試料の自然含水比(Wn=9.2%)は、路体工の施工限界含水比(W $_{90}$ =18.3%)より乾燥側にあることから、理論上、要求される品質(Dc $^{>}$ 90%)が確保できる材料である。
		□ よって、試験試料は自然含水比状態において路体工盛土材料として使用可能な材料である。
(2)	路床工	盛土材料としての評価
		□ 試験試料の自然含水比 (Wn=9.2%) は、路床工の施工限界含水比 (W ₉₅ =15.4%) より乾燥側にあることから、理論上、要求される品質 (Dc≥ 95%) が確保できる材料である。
		□ また、CBR値は22.0%と非常に高い値を示す結果となっている。
		□ よって、試験試料は自然含水比状態において路床工盛土材料として使用可能な材料である。

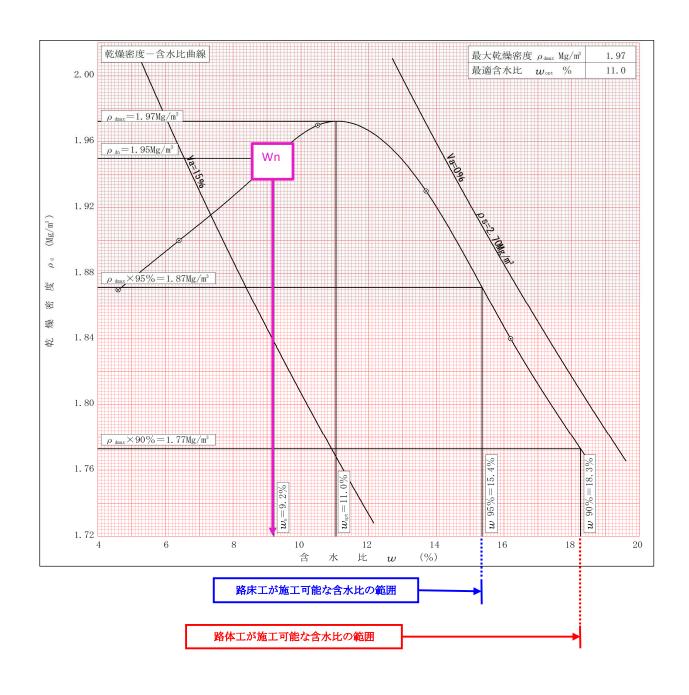


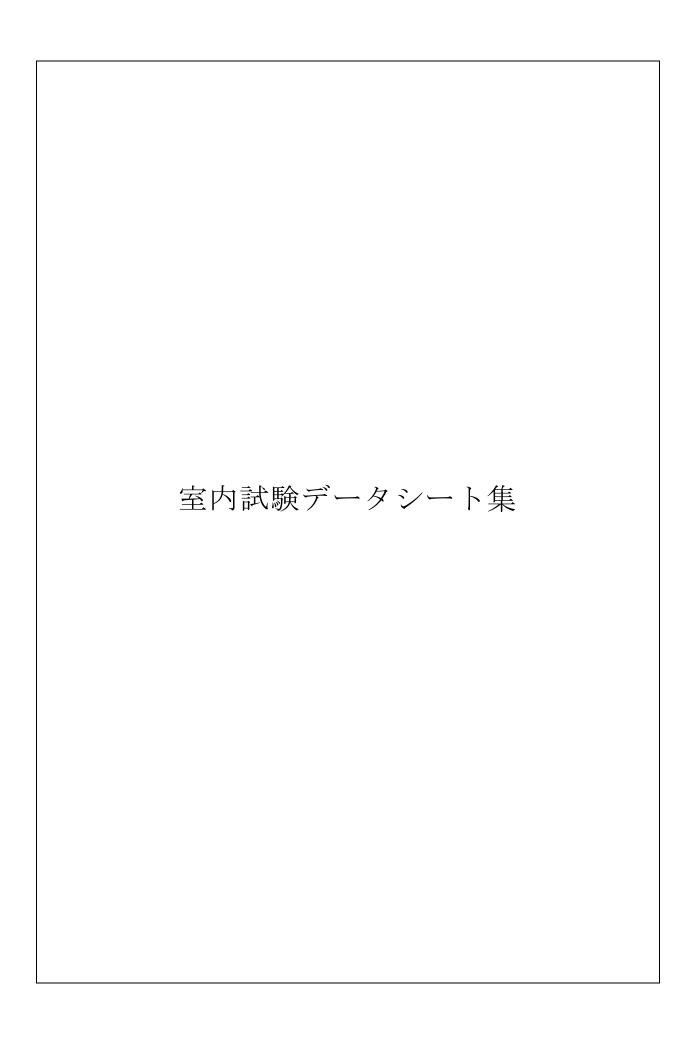
図2-2-1 乾燥密度-含水比曲線

(2) CBR値

適性について : 3以上 ないし 設計CBR以上

試験結果: CBR= **22.0**(%)

得られたCBR値は"22.0"と、非常に高い値が得られた。 試験試料は、路床盛土材料として良質な材料として評価される。


2-3. 試験結果総括

試験試料について、道路土工材料としての適性についてまとめる。

表2-3-1 道路土工材料としての適性について

	試料名 : 曽慶地內
路体盛土材料	自然含水比 (Wn) が、各施工限界含水比 (W ₉₀) よりも乾燥側に位置することから、適正な締固め施工を行うことにより品質規格値 (Dc≧ 90%) を確保出来る材料と評価される。 → 路体盛土材として問題無い。
路床盛土材料	自然含水比(Wn)が、各施工限界含水比(W ₉₅)よりも乾燥側に位置することから、適正な締固め施工を行うことにより品質規格値(Dc≥95%)を確保出来る材料と評価される。またCBR値は22.0%と高い値を示す結果が得られた。よって本試料は、路床盛土材料として良質な材料と評価出来る。 → 路床盛土材として問題無い。

以上

土質試験結果一覧表(材料)

調査件名 材料試験 整理年月日 令和 5年 8月 24日

整理担当者 佐藤隆弘 号 曽慶地内 (深 さ) 湿 潤 密 度 ρ_t Mg/m³ 乾燥密度ρ_d Mg/m³ 土粒子の密度 ho_s Mg/m³ 2.70 自然含水比 w_n % 9.2 間 隙 比 e 般 飽 和 度 S_r 石 分 (75mm以上) % 分¹⁾ (2~75mm) % 27. 2 粒 砂 分¹ (0.075~2mm) % 62.4 シルト分¹゚(0.005~0.075mm) % 6.5 粘土分10.005mm精)% 3.9 最大粒径 mm 9.5 均等係数U。 14.93 度 液性限界砂口 % NP塑性限界砂。 NΡ NΡ 塑性指数 /』 コンシステンシー指数 I。 地盤材料の 細粒分まじり 分 類 名 礫質砂 類 分類記号 (SG-F) 試験方法 B - b締 古 最大乾燥密度 $ho_{ ext{dmax}}\,\mathrm{Mg/m^3}$ 1.97 最適含水比 Wopt 11.0 試験方法 締固めた土 膨 張 比 r。 0.03 С 貫入試験後含水比 w2 % 13. 1 В 平 均 CBR % 22.0 R %修正CBR % 突固め回数 回/層 コーン指数 コーン指数 q。 kN/m^2

特記事項

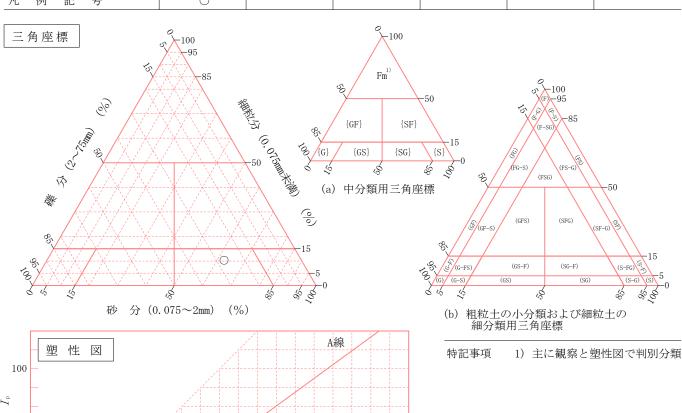
1) 石分を除いた75mm未満の土質材料 に対する百分率で表す。

 $[1kN/m^2 = 0.0102kgf/cm^2]$

Т	0	C	
- 1	U	O	

0051

地盤材料の工学的分類


調査件名 材料試験

試験年月日

令和 5年 8月 24日

試	験	*	佐藤隆弘
DT/	河火	18	上版 生元

 試 料 番 号	安康小子			
	曽慶地内			
(深 さ)				
石 分(75mm以上) %				
礫 分(2~75mm) %	27. 2			
砂 分(0.075~2mm) %	62. 4			
細 粒 分(0.075mm未満) %	10.4			
シルト分(0.005~0.075mm)%	6. 5		 	
粘 土 分(0.005mm未満) %	3. 9	 		
最大粒径 mm	9. 5			
均等係数 U。	14. 93			_
液性限界 🐠 %	NΡ			
塑性限界 🐠 %	NΡ			
塑性指数 I,	NΡ			
	細粒分まじり			
地盤材料の分類名	礫質砂			
分 類 記 号	(SG-F)	 	 	
凡例記号	0			

 $I_{\rm p}$ 羧 (CH) 蒞 B線 <u>₩</u> 50 窟 (MH) 20 (CL) A線: I₁=0.73(w₁-20) B線:w₁=50 (ML) 100 150 200 液 性 限 界 (%) $w_{\scriptscriptstyle
m L}$

JIS A 1202 JGS 0111

土 粒 子 の 密 度 試 験 (検定, 測定)

調査件名 材料試験

試験年月日 令和 5年 8月 10日

試 験 者 佐藤隆弘

			試	験 者	佐藤 隆弘	
試料番号 (深さ)	曽慶地内					
ピ ク ノ メ ー タ ー No.	70	8	13			
ピクノメーターの質量 <i>m</i> g	44. 90	46. 12	43. 62			
(蒸留水+ピクノメーター)質量 $m_s(T_2)$ g	153. 96	148. 91	148. 43			
$m_s(T_2)$ をはかったときの蒸留水の温度 T_2 $^{\circ}$	18. 3	19. 9	20. 1			
T_2 $^{\circ}$ $^{\circ$	0. 99854	0. 99822	0. 99818			
(試料+蒸留水+ピクノメーター) 質量 $m_{\mathfrak{b}}(T_1)$ g	204. 36	192. 24	196. 02			
$m_{\mathfrak{b}}(T_{\mathfrak{l}})$ をはかったときの内容物の温度 $T_{\mathfrak{l}}$ $^{\circ}$	30. 8	30.8	30.8			
T_1 $^{\circ}$ $^{\circ$	0. 99540	0. 99540	0. 99540			
温度 T_1 \mathbb{C} の蒸留水を満たしたときの (蒸留水+ピクノメーター)質量 $m_s(T_1)$ g	153. 62	148. 62	148. 14			
容 器 No.	70	8	13			
試 料 の (炉乾燥試料+容器) 質量 g	125. 24	115. 13	119. 44			
炉乾燥質量 容 器 質 量 g	44. 90	46. 12	43. 62			
$m_{ m s}$ g	80. 34	69. 01	75. 82			
土 粒 子 の 密 度 ρ _s Mg/m³	2.70	2.71	2.70			
平 均 値 ρ _s Mg/m³		2. 70				
試料番号 (深さ)						
ピクノメーター No.						
ピクノメーターの質量 m g g						
(蒸留水+ピクノメーター)質量 $m_s(T_2)$ g						
$m_s(T_2)$ をはかったときの蒸留水の温度 T_2 $^{f C}$						
T_2 $^{\circ}$ $^{\circ$						
(試料+蒸留水+ピクノメーター) 質量 $m_{\mathfrak{b}}(T_1)$ g						
$m_{\mathfrak{b}}(T_1)$ をはかったときの内容物の温度 T_1 $^{oldsymbol{\mathbb{C}}}$						
T_1 $^{\circ}$ $^{\circ$						
温度 T_1 \mathbb{C} の蒸留水を満たしたときの (蒸留水+ピクノメーター)質量 $m_s(T_1)$ g						
容 器 No.						
試 料 の (炉乾燥試料+容器) 質量 g						
炉乾燥質量 容 器 質 量 g			,			
$m_{\scriptscriptstyle \mathrm{S}}$ g						
土 粒 子 の 密 度 ρ _s Mg/m³						
平 均 値 ρ _s Mg/m³					·	

$$m_{e}(T_{1}) = \frac{\rho_{w}(T_{1})}{\rho_{w}(T_{2})} [m_{e}(T_{2}) - m_{f}] + m_{f}$$

$$\rho_{s} = \frac{m_{s}}{m_{s} + [m_{s}(T_{1}) - m_{b}(T_{1})]} \rho_{w}(T_{1})$$

JΙS	A	1	2	0	3
J G S		0	1	2	1

土の含水比試験

調査件名 材料試験

試験年月日 令和 5年 8月 8日

試 驗 者 佐藤 隆弘

				H-V 100		
試料番号 (深さ)	曽慶地内					
容器 No.	113	120				
<i>m</i> a g	2260. 5	2553. 8				
$m_{ m b}$ g	2116. 3	2375. 3				
m_{\circ} g	496. 1	496. 4				
w %	8. 9	9. 5				
	0. 3	9. 2				
特記事項		9. 2				
村北争坦						
= N/o(of H () of ()						
試料番号 (深さ)						
容器 No.						
<i>m</i> a g						
т ь g						
<i>m</i> ∘ g						
w %						
平均值 w %						
特記事項						
試料番号 (深さ)						
容器 No.						
$m_{ m a}$ g						
т ь g						
<i>m</i> ∘ g						
w %						
平均值 w %			<u> </u>		<u> </u>	
特記事項						
10 10 7						
試料番号 (深さ)						
容器 No.						
<i>m</i> a g						
g						
w %						
平均值 w %						
特記事項						
	I					
試料番号 (深さ)			Т			T
容器 No.						
<i>m</i> a g						
т ь g						
<i>m</i> ∘ g						
w %						
平均值 w %						
特記事項						

 $w = \frac{m_{\text{\tiny B}} - m_{\text{\tiny B}}}{m_{\text{\tiny B}} - m_{\text{\tiny C}}} \times 100$ $m_{\text{\tiny B}}$: (試料+容器)質量 $m_{\text{\tiny B}}$: (炉乾燥試料+容器)

m。: (炉乾燥試料+容器)質量

m。: 容器質量

JIS A 1204 JGS 0131

土 の 粒 度 試 験 (ふるい分析)

調査件名 材料試験

試験年月日 令和 5年 8月 18日

試料番号(深さ) 曽慶地内

試 験 者 佐藤隆弘

		全	=	武	料			2mmふる	るい通	鱼遇試料(沈降分	·析を行わ	ない場合)
	容器N	0.	50	0	45			容器 No					
含	<i>m</i> a	g	904.	2	885. 1		含	<i>m</i> a	g				
水	m_{b}	g	898.	2	880.1		水	$m_{\scriptscriptstyle m b}$	g				
/10	<i>m</i> _c	g	308.	0	304.3			<i>m</i> °	g				
比	w	%	1.	0	0.9		比	w_1	%				
	平均値	w%			1.0			平均值 u	y ₁ %				
(全	試料+彡	容器)	質 量		g	3650. 1	(2mm3	ふるい通過	試料-	+容器)質量	g		
容	器(No. 2	55)質	重量		g	762. 3	容	器(No.) [重 量	g		
全	試 料	質	量	m	g	2887.8	2 m m .	ふるい通道	過試彩	→ の質量 m₁	g		
全試	料の炉乾	燥質量	$m_s = \frac{1}{1}$	$\frac{m}{+w/10}$	0	2859. 2		、るい通過 の炉乾燥9		$m_{1s} = \frac{m_1}{1 + w_1/1}$	g . 00		
9 m m	ふるい残	: 匈公	(試料+容:	器)質量	il g	1539. 5	→ 計	割の后す	大幅 后	質量に対する			
	ふるい β 洗い後σ		容器(No. 2	70)質	量 g	761.8				『里に刈りる の炉乾燥質量比	$\frac{m_{\rm s}-m_{\rm 0s}}{m_{\rm s}}$		
	. DL V · 及 V.	/ n=v 1=1	炉 乾 燥	質 量	m 0s g	777. 7	2111111	2-2-1-10世間	D=V1=1 V	ノ // 平G/木貝 里 /L	77 C S		

2 mmふるい残留分 m_{0s} のふるい分析

	- //	, , os	, , ,				
ふるい	容器 No.	(残留試料+容器)質量	容器質量	残留試料質量	加積残留試料質量	加積残留率	通過質量分率P(d)
				m(d)	$\Sigma m(d)$	$\frac{\sum m (d)}{m_{\rm s}} \times 100$	$\left(1 - \frac{\sum m(d)}{m_s}\right) \times 100$
mm		g	g	g	g	%	%
75							
53							
37. 5							
26. 5							
19							
9. 5	106	567. 6	567. 6	0.0	0.0	0. 0	100.0
4. 75	106	804. 9	567. 6	237. 3	237. 3	8. 3	91. 7
2	106	1108. 0	567. 6	540. 4	777. 7	27. 2	72.8

2 mmふるい通過分 m_{1s} のふるい分析(沈降分析を行わない場合)

ふるい	容器No.	(残留試料+容器)質量	容器質量	残留試料質量	加積残留試料質量		加積通過率P	
				m (d)	$\sum m(d)$	$\frac{\sum m (d)}{m_{1s}} \times 100$	$\left(1 - \frac{\sum m (d)}{m_{1s}}\right) \times 100$	
μ m		g	g	g	g	%	%	%
850								
425								
250								
106								
75								

JIS A 1204 JGS 0131

土 の 粒 度 試 験 (2mmふるい通過分分析)

調査件名 材料試験

試験年月日 令和 5年 8月 18日

試料番号(深さ) 曽慶地内

試 験 者 佐藤隆弘

		2 m	m ふるい 通	通 試 料		土 粒 子 の 密 度 ρ _s Mg/m³	2. 70
	容器 No	э.	518	419	517	塑 性 指 数 I _P	
含	<i>m</i> a	g	120. 52	120.66	120.69	分散装置の容器 No.	
水	$m_{\scriptscriptstyle \mathrm{b}}$	g	120. 27	120. 35	120. 41	メスシリンダーNo.	M-1
/10	<i>m</i> c	g	58. 69	55. 00	58. 14	浮 ひ ょ う No.	39
比	w_1	%	0.4	0.5	0.4	メニスカス補正値 <i>C</i> _n	0.0005
	平均値 ι	v_1 %		0.4		使用した分散剤、溶液濃度、溶液添加量	
(沈降	分析用試	料+容	器)質量	g	307. 30	ヘキサメタ燐酸ナトリウム, 10ml	
容	器(No. 90)9)	質 量	g	191.60	全試料の炉乾燥質量に対する m_s-m_{0s}	0.700
沈降	分析用	試料	質量 m1	g	115. 70	2mmふるい通過試料の炉乾燥質量の比 ms	0. 728
	分析用試	1	$m_{1s} = \frac{m_1}{1+w_1/10}$	g g	115. 24	$M = \frac{V}{m_{1s}} \frac{\rho_s}{\rho_s - \rho_w} \rho_w \times 100$	1368. 4

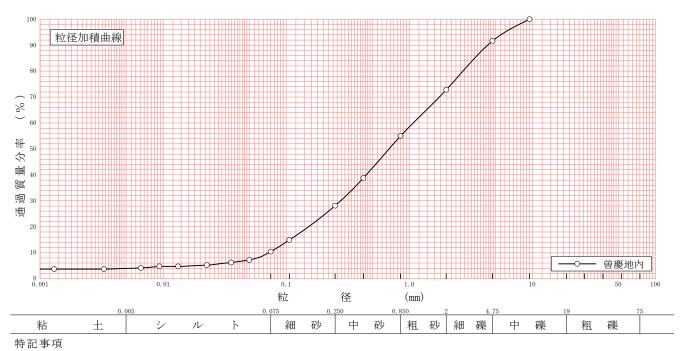
沈降分析

Vu 14 7	75 1/1									
()	1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
測定時刻	経過時間	浮ひょ	うの読み	測定時	有効深さ		粒 径 d	補正係数	加積通過率P	通過質量分率
	t	小数部分		の水温	L	30 η	$(6) \times \sqrt{\frac{L}{t}}$	F	$M \times ((3) + F)$	$\frac{P(d)}{m_s - m_{0s}} \times P$
	min	r	$r \neq C_{m}$	$^{\circ}$ C	mm	$\sqrt{g_{\scriptscriptstyle \mathrm{n}}(ho_{\scriptscriptstyle \mathrm{S}}- ho_{\scriptscriptstyle \mathrm{W}})}$	mm		%	<i>m</i> _s %
	1	0035	0040	30. 4	174.8	0. 0038	0.0502	0.0032	9. 9	7. 2
	2	0025	0030	30. 4	176. 7	0.0038	0. 0357	0.0032	8.5	6. 2
	5	0015	0020	30. 4	178. 7	0.0038	0. 0227	0.0032	7. 1	5. 2
	15	0010	0015	30. 4	179. 7	0.0038	0. 0132	0.0032	6.4	4. 7
	30	0010	0015	30. 4	179. 7	0.0038	0.0093	0.0032	6.4	4. 7
	60	0005	0010	30. 4	180.6	0.0038	0.0066	0.0032	5. 7	4. 1
	240	0000	0005	30. 4	181.6	0.0038	0.0033	0.0032	5. 1	3. 7
	1440	0000	0005	30. 4	181.6	0.0038	0.0013	0.0032	5. 1	3. 7

ふるい分析(沈降分析を行う場合)

~>~~~	73 771 (176	1471 N C 11 7	·/// ப /					
ふるい	容器No.	(残留試料+容器)質量	容器質量	残留試料質量	加積残留試料質量	加積残留率	加積通過率P	通過質量分率 P(d)
				$m^{(d)}$	$\sum m (d)$	$\frac{\sum m (d)}{m_{1s}} \times 100$	$\left(1 - \frac{\sum m (d)}{m_{1s}}\right) \times 100$	$\left \frac{m_{\rm s}-m_{\rm 0s}}{m_{\rm s}}\times P\right $
μ m		g	g	g	g	%	%	%
850	503	127. 76	99. 58	28. 18	28. 18	24. 5	75. 5	55. 0
425	503	125. 22	99. 58	25.64	53. 82	46. 7	53. 3	38.8
250	503	116. 52	99. 58	16. 94	70. 76	61. 4	38. 6	28. 1
106	503	120. 48	99. 58	20.90	91. 66	79. 5	20. 5	14.9
75	503	106. 70	99. 58	7. 12	98. 78	85. 7	14. 3	10. 4

JIS A 1204 JGS 0131


土 の 粒 度 試 験 (粒径加積曲線)

調査件名 材料試験

試験年月日 令和 5年 8月 18日

試 験 者 佐藤隆弘

											1==/191 1== 0= 1	
試料番号	曽慶地内					弒	料	番	号		曽慶地内	
(深 さ)						(深			さ)			
	粒 径 mm	通過質量分率%	粒 径 mm	通過質量分率%	粗			分		%	*	
	75		75		中	礫		分		%	8.3	
\$	53		53		細	礫		分		%	18. 9	
	37. 5		37. 5		粗	砂	; 	分		%	17.8	
る	26. 5		26. 5		中	砂	:	分		%	26. 9	
	19		19		細	砂	;	分		%	17. 7	
l)	9. 5	100.0	9. 5		シ	ル	<u>۲</u>	分		%	6. 5	
V ·	4. 75	91. 7	4. 75		粘	土		分		%	3. 9	
^	2	72.8	2		2mm	ふるレ	・通過	質:	量分	率 %	72.8	
分	0.850	55. 0	0.850		425	μm & ?	るい通	過質	量分率	枢 %	38.8	
	0. 425	38.8	0. 425		75 μ	mふる	い通	過質	量分率	率 %	10. 4	
析	0. 250	28. 1	0. 250		最	大	粒	径		mm	9. 5	
	0. 106	14. 9	0. 106		60	%	粒	径	$D_{\scriptscriptstyle 60}$	mm	1. 0810	
	0.075	10. 4	0.075		50	%	粒	径	$D_{\scriptscriptstyle 50}$	mm	0. 6858	
	0.0502	7. 2			30	%	粒	径	$D_{\scriptscriptstyle 30}$	mm	0. 2777	
Self-	0.0357	6. 2			10	%	粒	径	$D_{\scriptscriptstyle 10}$	mm	0. 0724	
沈	0.0227	5. 2			均	等	係	数	$U_{\scriptscriptstyle m c}$		14. 93	
降	0.0132	4. 7			曲	率	係	数	$U_{\rm c}'$		0. 99	
	0.0093	4. 7			土 ‡	粒子	の密	度	$ ho_{ m s}$	${\rm Mg/m^3}$	2.70	
分	0.0066	4.1			使用	したら	分散剤				ヘキサメタ燐酸ナトリウム	
析	0.0033	3. 7			溶液	凌濃度,	溶液	添加	量		10m1	
וער	0.0013	3. 7			20	%	粒	径	D_{20}	mm	0. 1522	

JΙS	A	1205
IGS		0 1 4 1

土の液性限界・塑性限界試験(測定)

調査件名 材料試験

試験年月日 令和 5年 8月 21日

試 験 者 佐藤 隆弘

JIS A 1210 JGS 0711

突固めによる土の締固め試験(測定)

調査件名 材料試験

試験年月日 令和 5年 8月 23日

試料番号 (深さ) 曽慶地内

試 験 者 佐藤隆弘

• 1 1	ш 3 (ис) п	~ 2, 4			1-1-71-5		
試	験 方 法	B-b	土 質 名 称				
式 #	斗の準備方法	乾燥法, 温潤法	ランマー質量 kg	2.5	内径	mm	150
式 #	斗の使用方法	繰返し法 ,非繰返し法	落下高さ mm	300	高さ	mm	125
含水	試料分取後 w。%	9. 2	突固め回数回/層	55 N	容量	V mm ³	2209×10^{3}
比	乾燥処理後 🐠 %	4. 6	突固め層数 層	3	質量 n	n ₁ g	4497
ij.	定 No.	1	2	3		•	4
試料+	モールド)質量 $m_2^{(2)}$ g	8823	8952	9156			9306
 記	潤 密 度 ρ _t Mg/m	1. 96	2. 02	2. 11			2. 18
区均	匀含水比 w %	4. 6	6. 4	8. 7			10. 5
乞 :	燥 密 度 ρa Mg/m	1. 87	1. 90	1.94			1. 97
	容器 No.	28	30	2			9
	$m_{ m a}$ g	1313. 9	1291. 1	1317.	1		1259. 7
含	$m_{ m b}$ g	1269. 2	1230. 5	1229.	5		1163. 1
	m_{\circ} g	273. 3	270. 9	229. 4			233. 8
水	w %	4. 5	6. 3	8.8			10. 4
1	容器 No.	3	4	10			26
	$m_{ m a}$ g	1283. 9	1251. 7	1330. 2	2		1347. 9
比	т ь g	1239. 5	1189. 7	1243. 3	3		1241.6
	$m_{ m c}$ g	279. 6	231. 1	229. 1			228.8
	w %	4. 6	6. 5	8.6			10. 5
則	定 No.	5	6	7			8
試料+	モールド)質量 $m_2^{(2)}$ g	9361	9220				
記 :	潤 密 度 ρ _t Mg/π	2. 20	2. 14				
区 均	的含水比w %	13. 7	16. 2				
乞 :	燥 密 度 ρ _d Mg/m	1. 93	1.84				
	容器 No.	29	16				
	m _a g	1340.8	1361. 6				
含	т ь g	1206. 5	1203. 2				
	<i>m</i> ∘ g	227.3	225. 5				
水	w %	13. 7	16. 2				
.1.	容器 No.	15	5				
	<i>m</i> a g	1386. 3	1297. 7				
比	т ь g	1247.8	1151. 4				
	<i>m</i> c g	233. 5	242. 4				
t	w %	13. 7	16. 1				

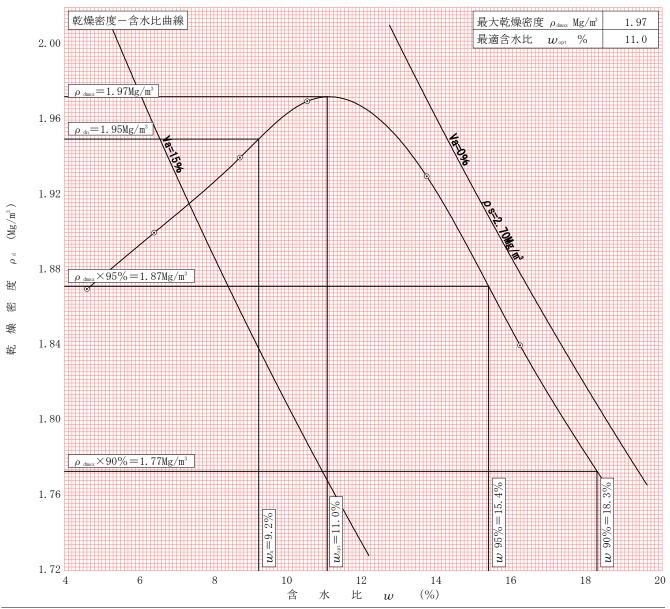
$$\rho_{\rm d} = \frac{\rho_{\rm t}}{1+ \ w/100}$$

¹⁾ 内径150mmのモールドの場合はスペーサーディスクの高さを差引く。

²⁾ モールドの質量は底板を含む。

JΙS	A	1210
JGS		0711

突固めによる土の締固め試験 (締固め特性)


調査件名 材料試験

試験年月日 令和 5年 8月 23日

試料番号 (深さ) 曽慶地内

試 験 者 佐藤隆弘

試 !	験 方 法	В-	- b	土質名	称				
試 料	の準備方法	乾燥法,	湿潤法	ランマー	質量 kg	2.5	土粒子の密度	$\not\in ho_{ m s} \; { m Mg/m}^3$	2.70
試 料	の使用方法	繰返し法,	非繰返し法	落 下 高	さ mm	300	試料調製前の	最大粒径 mm	9.5
含水比	試料分取後 🐠。%	9. 2		突固め	回数回/層 55		モールド	内径 mm	150
百 小 儿	乾燥処理後 w 1 %	4.6		突固め鳥	層数 層	3	モールト	高 き ¹⁾ mm	125
測	定 No.	1	2	3	4	5	6	7	8
平均含	3 水比 w %	4.6	6. 4	8.7	10.5	13. 7	16. 2		
乾燥	密 度 $\rho_{\rm d}~{ m Mg/m^3}$	1.87	1. 90	1.94	1. 97	1. 93	1.84		

特記事項

 内径150mmのモールドの場合はスペーサーディスクの高さを差引く。 ゼロ空気間隙曲線の計算式

$$\rho_{\rm dsat} = \frac{\rho_{\rm w}}{\rho_{\rm w}/\rho_{\rm s} + w/100}$$

JIS A 1211 JGS 0721

C B R 試 験 (初期状態, 吸水膨張試験)

調査件名 材料試験

試験年月日 令和 5年 8月 18日

試料番号(深さ) 曽慶地内

試 験 者 佐藤隆弘

V/11	留方(休さ)	音慶地門			<u></u>	一次 在 在		
t	験 方 法	締固めた土, 二乱さない土	ランマー質	量 kg	4. 5	土質名和		
	固め方法	設計CBR	落 下 高	さ mm	450	自然含水比 и	y _n %	9. 2
試	準備方法	非乾燥法,一空気乾燥社	突固め回	数 回/層	67	最適含水比 и	, opt %	11. 0
料準	空気乾燥前含水比		突固め層	数層	3	最大乾燥密度 ρ _ο	_{lmax} Mg/m ³	1. 97
備	試料調製後含水比w。	/ ₆	10	内 径 mm	150	荷重板質量	kg	5
			モールド	高 さ ¹⁾ mm	125	モールド容量 V	mm ³	2209×10^{3}
	供 試	体 No.			:	2		
	容	器 No.	113	120	113	120		
含	ì	n _a g	2260. 5	2553.8	2260. 5	2553.8		
		n ь g	2116. 3	2375. 3	2116. 3	2375. 3		
水		n . g	496. 1	496.4	496. 1	496.4		
比	4	v_1 %	8. 9	9.5	8. 9	9.5		
	平均	值 w_1 %	9.	2	9.	. 2		
密		·ルド)質量 $m_{\scriptscriptstyle 2}^{\scriptscriptstyle 2)}$ g	128	367	128	887		
密	モール	ド 質 量 m ²⁾ g	83	08	83	352		
度	湿潤	密 度 ρ _t Mg/m ²	2.	06	2.	05		
	乾燥	乾 燥 密 度 ρ _d Mg/m		89	1.	88		
	水浸時間	h 時刻	変位計の読み	膨張量 mm	変位計の読み	膨張量 mm	変位計の読み	膨張量 m
	0		520	0.00	864	0.00		
吸	ž 1		521	0.01	865	0.01		
	2		522	0.02	865	0. 01		
水	4		522	0.02	866	0.02		
	8		523	0.03	867	0.03		
脻	24		523	0.03	867	0.03		
	48		523	0.03	867	0.03		
張	長 72		524	0.04	868	0.04		
	96		524	0.04	868	0.04		
話	(試料+モー	·ルド)質量 m_3 g	130)37	130	059		
	膨	養 比 r₀ %	0	. 03	C	0. 03		
験	湿 潤	密 度 ρ' Mg/m	2	. 14	2	2. 13		
	乾燥	密 度 ρ' Mg/m	1	. 89	1	. 88		
	平均	· 水 比 w′ %	13	13. 2		13. 3		

- 1) スペーサーディスクの高さを差引く。
- 2) モールドの質量は有孔底板を含む。

$$r_{\circ}$$
 =
供試体の膨張量(mm)
供試体の最初の高さ(125mm) $\times 100$

$$\rho_{\rm t}' = \frac{m_3 - m_1}{V \left(1 + r_{\rm e} / 100\right)} \times 10^3$$

$$\rho_{\rm d}' = \frac{\rho_{\rm d}}{1 + r_{\rm e}/100}$$

$$w' = \left(\frac{\rho_{\rm t}'}{\rho_{\rm d}'} - 1\right) \times 100$$

JIS A 1211 JGS 0721

C B R 試 験 (貫入試験)

調査件名 材料試験

試験年月日 令和 5年 8月 22日

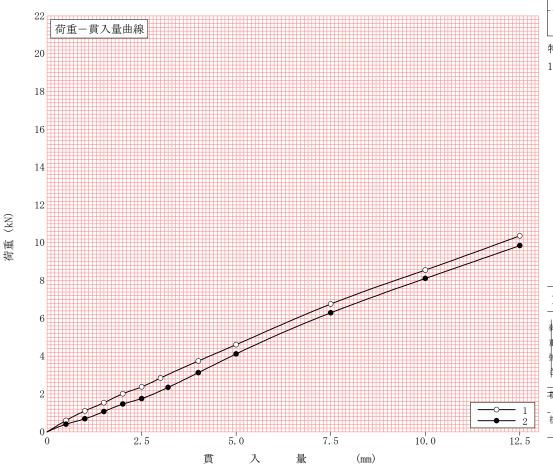
試料番号(深さ) 曽慶地内

試 験 者 佐藤隆弘

八个省	方(海	< 0.) 冒層	愛地內						武	映 有	1年.朋	医 隆弘		
試	験	 条	件	水浸,	非水浸	貫入	速さ	mm/min		1.0	荷重相	扳質量	kg		5
養	生		件		日空気中	荷 重 計 No.		314		貫入ピストンの断面積 mm ²		19. 6	3×10^{2}		
	生	条	14-	4	日水浸	容	量	kN	3	5.0	較正	化公 木灯	MN/m²/目盛 kN/目盛	0.0	89446
	供試	体	No.		1	供	失試 体	No.		2	伊	长 試 体	S No.		
貫	入	量	mm	荷重強。	≦,荷重	貫	入 量	ł mm	荷重強	さ,荷重	貫	入	量 mm	荷重強	➡, 荷重
読	み		平 均	荷重計	MN/m²	読	み	平 均	荷重計	MN/m²	読	み	平均	荷重計	MN/m²
1	2		平均	の読み	kN	1	2	平均	の読み	kN	1	2	平均	の読み	kN
0	0.	0	0.0	0.0	0.000	0	0.0	0.0	0.0	0.000	0				
0.	5 0.	5	0. 5	6. 7	0. 599	0. 5	0. 5	0.5	4.5	0. 403	0. 5				
1.	0 1.	0	1.0	12. 4	1. 109	1.0	1.0	1.0	7. 7	0. 689	1.0				
1.	5 1.	5	1.5	17. 2	1. 538	1. 5	1. 5	1.5	12.0	1. 073	1. 5				
2.	0 2.	0	2. 0	22. 5	2.013	2. 0	2. 0	2. 0	16. 4	1. 467	2. 0				
2.	5 2.	5	2. 5	26. 6	2. 379	2. 5	2. 5	2. 5	19. 7	1. 762	2. 5				
3.	0 3.	0	3. 0	31.8	2.844	3. 0	3. 4	3. 2	26. 3	2. 352	3. 0				
4.	0 4.	0	4. 0	41.9	3. 748	4. 0	4.0	4. 0	35. 0	3. 131	4. 0				
5.	5.	0	5. 0	51.6	4. 615	5. 0	5. 0	5. 0	46. 1	4. 123	5. 0				
7.	5 7.	5	7. 5	75. 6	6. 762	7. 5	7. 5	7. 5	70. 4	6. 297	7. 5				
10.	0 10.	0	10.0	95. 7	8. 560	10.0	10. 0	10. 0	90. 7	8. 113	10. 0				
12.	5 12.	5	12. 5	115. 9	10. 367	12. 5	12. 5	12. 5	110. 1	9. 848	12. 5				
貫	容器	No.		120	104	貫	容器No).	125	121	貫	容器N	0.		
入 試	m _a	g	282	2.3	2827. 2	入 試	<i>m</i> ₃ 8	271	5. 3	2879.8	入試	ma i	g		
験	$m_{ m b}$	g	2550	6.0	2566. 2	験	<i>m</i> ♭ 8	245	5. 4	2596.6	験	m b	g		
後の	m_{\circ}	g	490	6. 4	498. 4	後の	m. 8	48	6. 5	483.3	後の	m_{\circ}	g		
含 水	w_2	%	1:	2.9	12. 6	含 水	w2 %	6 1	3. 2	13. 4	含水	w_2 (%		
比	平均	」値	w2 %	12	2. 8	比	平均值	直 w2 %	1	3. 3	比	平均	値 w2 %		

JΙS	A	1211
IGS		0721

C B R 試 験 (室内試験結果)


調査件名 材料試験

試験年月日 令和 5年 8月 22日

3 N/M 75 H	(\mt (- \	24 es 10.45
試料番号	(深さ)	兽慶地内

試 験 者 佐藤隆弘

試 験	方	法	 締固めた土, 乱さない土 	ランマー質	t量 kg	4.5	土質名称	东 	
突固	め方	法	設計CBR	落 下 高	ė mm	450	空気乾燥前含水片	七 %	
試料の	準備方	法	非乾燥法,空氣乾燥法	突固め回	数 回/層	67	自然含水比 🐠	%	9. 2
試 験	条	件	水浸, 非水浸	突 固 め 層	数 層	3	最適含水比 🐠	_{opt} %	11. 0
* L	K	/tla	日空気中		内 径 mm	150	最大乾燥密度 $ ho_{\scriptscriptstyle dma}$	mx Mg/m ³	1. 97
養生	条	件	4 日水浸	モールド	高 さ mm	125			
	供	試	体 No.		1		2		
	前	含 7	k 比 w1 %	9. 2		9. 2			
水	刊	乾燥	密度 $ ho_{ ext{d}}$ Mg/ $ ext{m}^3$		1. 89		1. 88		
膨張		膨弱	長比 r。 %	0. 03 13. 2		0. 03 13. 3			
弒	後	平均行	含水比 w′ %						
験		乾燥	密度 ρ' _d Mg/m³	1.89		1.88			
貫	試験後の含水比 🐠 %			1:	2.8	13. 3			
入	貫入量	ţ2.5m₁	mにおけるCBR%	1	7. 8	13. 1			
試	貫入量	t5. 0m₁	mにおけるCBR%	23. 2		20. 7			
験	(C B R %		23. 2		20. 7			

特記事項

 スペーサーディスクの 高さを差引く。

 $[1MN/m^2 = 10.2kgf/cm^2]$ [1kN = 102kgf]

貫入量 mm	2.5	5. 0
供試体 No.1	2. 380	4. 615
単 供試体対 No.2	1. 762	4. 123
供試体 No.		
標準荷重強さ MN/m ²	6. 9	10. 3
標 準 荷 重 kN	13. 4	19. 9

湿潤単位体積重量の算出

試料番号 材料試験 (曽慶地内)

単位体積重量は、「突固めによる土の締固め試験」結果より、下式に基づき算出する。

$$\gamma t \quad (kN/m^3) = gn \quad (m/s^2) \times \rho d \quad (Mg/m^3) \times \boxed{1 + \frac{Wn}{100}}$$

ここに、 γt : 湿潤単位体積重量 (kN/m³)

ρt : 湿潤密度 (Mg/m³)
 ρd : 乾燥密度 (Mg/m³)
 Wn : 自然含水比 (%)

gn : 重力加速度 (m/s^2) \rightarrow 9.80665

なお、試験試料の最大乾燥密度及び自然含水比は以下のとおりとなっており、締固め度等に応じた単位体積重量は表1のとおり算出される。

◆ 試験試料の最大乾燥密度 ρ dmax = 1.97

◆ 試験試料の自然含水比 Wn = 9.2

表1 締固め度等に応じた単位体積重量

					,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	
条件			乾燥密度	重力加速度	自然含水比	単位体積重量
			$ ho$ d (Mg/m 3)	gn (m/s^2)	Wn (%)	γ t (kN/m ³)
締固め度	100	%	1. 97			21. 1
締固め度	95	%	1.87			20.0
締固め度	90	%	1. 77	9.80665	9. 2	19. 0
締固め度	85	%	1.67			17. 9
Wn時の乾燥密度			2. 02			21.6

試料採取状況

曽慶地内

試料採取状況

曽慶地内

土粒子の密度試験

計量中

土の含水比試験

計量中

土の粒度試験

沈降分析

土の粒度試験

ふるい分け

土の液性限界・塑性限界試験

N.P

ANDER BAN	A 18. 18. 18. 18. 18. 19.	
	工事名 材料試験	
	工 種 室内試験	
	宣慶 地 内 試料調整中	

土の締固め試験

試料調整中

土の締固め試験

供試体

突固め中

土の締固め試験

供試体

整形中

土の締固め試験

供試体

密度計量中

CBR試験

供試体

水浸中

CBR試験

供試体

貫入中